
Your Partner in AS/400 and iSeries Education

RPG IV: Subprocedures
Beyond the Basics

Techniques to Leverage Subprocedures

Jon Paris
jon.paris@partner400.com
www.Partner400.com

 OCEAN Technical Conference
Catch the Wave

In this presentation we have attempted to gather together some of the information that we have
collected while using and teaching RPG IV subprocedures and prototyping. We hope you will find it
useful. If you have your own tips or techniques on the subject, or if there are areas not covered here
that you would like to know more about, we would love to hear from you. Please e-mail us at the
address given in this handout.

The author, Jon Paris, is co-founder of Partner400, a firm specializing in customized education and
mentoring services for AS/400 and iSeries developers. Jon's career in IT spans 30+ years including
a 10 year period with IBM's Toronto Laboratory. Jon now devotes his time to educating developers
on techniques and technologies to extend and modernize their applications and development
environments.

Together with his partner, Susan Gantner, Jon authors regular technical articles for the IBM
publication, eServer Magazine, iSeries edition, and the companion electronic newsletter, iSeries
EXTRA. You may view articles in current and past issues and/or subscribe to the free newsletter at:
eservercomputing.com/iseries.

Feel free to contact the author at: Jon.Paris @ Partner400.com

Disclaimer
This presentation may contain small code examples that are furnished as simple examples to
provide an illustration. These examples have not been thoroughly tested under all conditions. We
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
All code examples contained herein are provided to you "as is". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED.
Unless otherwise noted, all features covered in this presentation apply to all releases of RPG IV.
Where a function was added in a later release, I have attempted to identify it. For example V3R2+
indicates that the feature is available at V3R2, V3R6, V3R7, etc.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 1-2

 * FmtDate - Formats a "pretty" date for any date
 * - Uses: DayName
 * - Input: WorkDate (Date field in *Eur format)
 * - Return: Date string (50 characters)

P FmtDate B Export
D PI 50
D InpDate D Const DatFmt(*Eur)

D Suffix S 2

D Month S 2 0
D Day S 2S 0
D Year S 4A

D MonthData DS

D Values 108 Inz('January February March +
D April May June +
D July August September+
D October November December')

D MonthName 9 Overlay(MonthData) Dim(12)

Another Date Routine - FmtDate
Let's use this new routine to review the basics

Before we get into completely new areas, we will use this example of a general purpose date routine
to review the basics of subprocedure construction.

This routine is supplied as an additional example of the kind of reusable routines that are easily built
using RPG IV subprocedure support. Combined with DayName and DayOfWeek** it provides a
starting point for a library of date related functions.

For simplicity I tend to keep all of my related functions together in a single source. i.e. this routine
would be in the same source member as the other date routines. Of course the prototypes would be
in a separate source member and would be copied (/COPY of course!) into this source and that of
any program that wished to use this function.

** If you don't already have the code for these subprocedures you can find them on one of the
following notes pages.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 3-4

FmtDate - C-Specs

 * Extract the day portion of the day and work out it's suffix
C Extrct InpDate:*D Day

C Select

C When (Day > 3 And Day < 21) Or
C (Day > 23 And Day < 31)
C Eval Suffix = 'th'

C When Day = 1 Or Day = 21 Or Day = 31
C Eval Suffix = 'st'

C When Day = 2 Or Day = 22
C Eval Suffix = 'nd'

C When Day = 3 Or Day = 23
C Eval Suffix = 'rd'

C EndSl

The code below could be replaced by a table of suffixes
It would contain an entry for each of the 31 possible day numbers
This would simplify the logic but be much more boring to read !!

FmtDate - C-Specs
How to get the name of the day ?

Use the DayName procedure from the Procedures Basics session
Procedures using procedures using

For releases earlier than V4R4
You will need to replace %Char in the following code by using a
combination of %Trim together with %EditC or %EditW

 * Now get the Month and Year portions then format the return value

C Extrct InpDate:*M Month

C Extrct InpDate:*Y Year

C Return %TrimR(DayName(InpDate)) + ' the '

C + %Char(Day) + Suffix

C + ' of ' + %TrimR(MonthName(Month))

C + ', ' + Year

P E

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 5-6

V5R1 Update
Here is the same code this time using V5R1 options

// Extract the day portion of the day and work out it's suffix

 Day = %SubDt(InpDate : *D);

 Select;
 When (Day > 3 And Day < 21) Or (Day > 23 And Day < 31);
 Suffix = 'th';
 When (Day = 1) Or (Day = 21) Or (Day = 31);
 Suffix = 'st';
 When (Day = 2) Or (Day = 22);
 Suffix = 'nd';
 When (Day = 3) Or (Day = 23);
 Suffix = 'rd';

 EndSl;

// Now format and return the date string

 Return %TrimR(DayName(InpDate)) + ' the ' + %Char(Day) + Suffix
 + ' of ' + %TrimR(MonthName(%SubDt(InpDate : *M)))
 + ', ' + %Char(%SubDt(InpDate : *Y));

This version takes advantage of some of the new V5 features. In particular the %SUBDT BIF and
the free form coding. As you can see the whole routine is not much more than a huge RETURN
statement.

If we had wanted to, we could have done the whole thing on the RETURN. How? Well that is left as
an exercise for the reader! Here's a hint, we would need to code an array for the suffixes.

An additional benefit of this approach is that because of the use of %SUBDT, the two workfields
Month and Year are not required and their definitions can be removed.

Those of you looking for the source code for DayOfWeek and DayName will find them on the
following pages.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 7-8

Here is the code for DayOfWeek. We will not be going through it in the session so if you have any
questions please feel free to e-mail me. The code for DayName is on the page below.

 * DayOfWeek - Calculates day of week (Mon = 1, Tue = 2, etc.) for any date
 * - Input: WorkDate (Date field in *USA format)
 * - Return: Single digit numeric

 P DayOfWeek B Export

 * Procedure interface (PI) definition

 D PI 1S 0
 D WorkDate D

 * The base date AnySunday can be set to the date of ANY valid Sunday
 * (If Sunday is Day 1 for you then adjust the base date etc. accordingly)
 D AnySunday S D INZ(D'04/02/1995')
 D WorkNum S 7 0
 D WorkDay S 1S 0

 C WorkDate SubDur AnySunday WorkNum:*D
 C WorkNum Div 7 WorkNum
 C MvR WorkDay

 * This version changed from the original to demonstrate multiple 'Return's

 C If WorkDay < 1
 C Return WorkDay + 7
 C Else
 C Return WorkDay
 C EndIf

 P DayOfWeek E

 * DayName - Calculates alpha day name for any date
 * - Uses: DayOfWeek
 * - Input: WorkDate (Date field in *USA format)
 * - Return: Alpha day name (9 characters)
 * NOTE: Don't forget to change the array if you change DayOfWeek
 * to use a day other than Monday as Day 1!

 P DayName B Export

 D PI 9
 D WorkDate D

 D DS
 D DayData 42 Inz('Mon Tues Wednes+
 D Thurs Fri Satur Sun ')
 D DayArray 6 Overlay(DayData) Dim(7)

 C Return %TrimR(DayArray(DayOfWeek(WorkDate)))
 C + 'day'

 P DayName E

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 9-10

Passing by value

Optional & Omitted parms

Other prototype options

Parameter Options

In this section we will review some of the parameter options available. Please note that many of
these options are not restricted to subprocedures. For example the specification of optional
parameters can be done for any type of program, procedure, or function call.

On the other hand, the option to pass parameters by value (that is to say that a copy of the actual
data is passed to the called procedure) is only available for procedure and function calls.

There are a number of other parameter options available which we may touch on briefly during the
session.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 11-12

Passing parameters by VALUE
An alternative approach to passing by reference

A copy of the actual data is passed to the called procedure
Not a pointer to the data as when passing by reference

Like CONST it can accommodates mismatches in data definition
For example accepting an *ISO date when a *EUR format is expected

Since a copy is passed the callee is allowed to change the data
It only applies to bound calls

i.e. It cannot be used when calling a *PGM object

 * Prototype for DayOfWeek procedure

 D DayOfWeek PR 1S 0
 D D VALUE DATFMT(*EUR)
 : :
 D StartDate S D DATFMT(*ISO)
 : :
 * Adjust start date if it falls on a Sunday
 C If DayOfWeek(StartDate) = 1
 C AddDur 1:*D StartDate

The keyword VALUE has a similar effect to CONST. The difference is that when VALUE is specified
a copy of the data is passed to the called procedure. This is known as passing parameters by value.
The normal method on the AS/400 is known as passing parameters by reference, which means that
a pointer to the data is passed.

Passing by value is the method used by C functions, it can also be useful in our own coding if we
want to ensure that the called routine cannot affect us by changing the parameter's value. In this
regard it is similar to using a PARM with Factor 2 and Result.

Since OS/400 programs (*PGM objects) can only receive parameters passed by reference (i.e. a
pointer) they cannot be called in this way. Only subprocedures and procedures called with a CALLB
can use the VALUE keyword.

As with CONST, the VALUE keyword allows the compiler to accommodate mismatches in definitions
of parameters between the calling and called programs or procedures. When you use this keyword,
you are specifying that the compiler is to make a copy of the data prior to sending it. In doing so the
compiler will perform any conversions needed before passing the parameter.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 13-14

Using the VALUE Keyword

 D EndOfMonth Pr D DatFmt(*USA)
 D USADate D DatFmt(*USA) Value

 D Today S D Inz(*Sys)
 D EndDate S D

 C Eval EndDate = EndOfMonth(Today)
 C EndDate Dsply
 C Eval *INLR = *On

 P EndOfMonth B
 D PI D DatFmt(*USA)
 D InpDate D DatFmt(*USA) Value

 D TempDay S 2 0

 * Advance the date passed to us by one month
 C ADDDUR 1:*M InpDate

 * Subtract day number from the date to reach last day of prior month
 C EXTRCT InpDate:*D TempDay
 C SUBDUR TempDay:*D InpDate
 C Return InpDate
 P EndOfMonth E

This routine demonstrates the use of the VALUE keyword.

When we use the VALUE keyword, the compiler knows that the parameter passed to it is a copy of
the original data. Knowing that it , it will permit changes to be made to it. This saves us from having
to define a working copy of the date within the subprocedure and ensures that the original value
cannot be changed by the called procedure. Had we used the CONST keyword instead of VALUE,
the compiler would have rejected the SUBDUR operation.

Just as with CONST, the VALUE keyword allows the compiler to take care of the fact that an *ISO
date was being passed and not the *USA format that is expected. The parameter will be converted
from *ISO to *USA while producing the copy.

This procedure also demonstrates that the format of the date returned by the subprocedure does not
have to match that of the receiver variable - EndDate in this case which has a format of *ISO.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 15-16

V5 Version of EndOfMonth

 D EndOfMonth Pr D DatFmt(*USA)
 D USADate D DatFmt(*USA) Value

 D Today S D Inz(*Sys)
 D EndDate S D

 /FREE
 EndDate = EndOfMonth(Today);
 Dsply EndDate;
 *INLR = *On;
 /END-FREE

 P EndOfMonth B
 D PI D DatFmt(*USA)
 D InpDate D DatFmt(*USA) Value

 D TempDay S 2 0

 /FREE
 InpDate = InpDate + %Months(1);
 Return InpDate - %Days(%SubDt(InpDate : *D));
 /END-FREE
 P EndOfMonth E

Once again, as you can see the V5 version is considerably shorter.

Could you perform the entire calculation on the Return opcode? Yes - but it would mean repeating
part of the calculation. i.e. you would have to replace each reference to InpDate on the Return with
InpDate + %Months(1). The resulting expression might be a little confusing and would probably
take longer to run, except possibly at full optimization.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 17-18

OPTIONS(*NOPASS)
Indicates that the parameter is optional

ALL subsequent parameters must also be *NOPASS
Called procedure must check the number actually passed
Useful if the procedure is to provide default values

 D ProcInterface PI
 D Parm1 20A
 D Optional2 10A Options(*NoPass)

 D Parm2 S 10A Inz('DefaultVal')

 * Check for optional parameter and use value if present
 C If %Parms = 2
 C Eval Parm2 = Optional2
 C EndIf

 D OptionalTest Pr
 D Parm1 20A
 D Optional2 10A Options(*NoPass)
 : :
 C CallP OptionalTest(FirstParm)

Note that *NOPASS can only be used when all remaining parameters are also optional and specified
as *NOPASS. This is similar to the CL command interface where many parameter values are
optional.

Be careful not to confuse *NOPASS with *OMIT - see the following chart

*NOPASS allows a parameter to be omitted completely. The programmer must ensure that the
parameter in question is not referenced if it has not been passed. %Parms can be used to establish
if the parameter was passed or not.

As shown in the example above, If the parameter is not passed, the called procedure can handle this
by creating a local variable which is initialized to the default value. If the parameter is passed it is
moved to this variable which is subsequently used in all further processing.

Note that you cannot move a default value into the parameter if it wasn't passed - there's nowhere to
put it!! You will get a pointer exception just as you would if you tried to reference the parameter
directly.

You should also be aware that attempting to access a parameter (or checking to see if it has a valid
address) is not a good idea. You may get a "false positive" due to a pointer being in the right place
on the stack. Of course it is not the pointer you want, and you could be corrupting just about
anything if you move data to the parm!!

Always, always, always, use %Parms to check the number of parms passed if optional parameters
are in use.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 19-20

 P EndOfMonth B
 D PI D DatFmt(*USA)
 D InpDate D DatFmt(*USA) Value
 D Months 3P 0 Options(*NoPass) Value

 * If the optional "Months" value is passed then advance by that
 * value plus one month otherwise advance the date by one month
 C If %Parms > 1
 C Eval Months = Months + 1
 C AddDur Months:*M InpDate
 C Else
 C AddDur 1:*M InpDate
 C EndIf
 : : : :

Using Options(*NoPass)
This is a variation that uses an optional parameter

If a "Months" parameter is NOT supplied, the routine assumes that the end
date of the month in which the date falls is to be returned.
If a parameter is supplied, then the routine will return the last day of the
month that many months from the date that was passed.

The input variables can be modifed since they were passed by Value

By modifying our example to use an optional parameter we have enhanced its functionality. It can
now advance not just to the end of the month but to the end of the month "n" months from now.

Perhaps as important is the fact that we have made the change without impacting its original
behaviour! The routine tests to see if the second parameter is present, and if it is not, it uses the
default value of 1. Since this is the behaviour of the original routine no change would be required in
any program that was using the it.

You might like to consider what changes could be made to the subprocedure to allow the first
parameter (i.e. the date) to be optional. If no date were passed we could use the current date as the
default. The implementation of thi is left as an exercise for the student. e-mail me (Jon.Paris@
Partner400.com) if you get stuck for an answer.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 21-22

OPTIONS(*OMIT)
Allows the special value *OMIT to be used as the parm

It cannot really be omitted
The called procedure must check for this special value
It can do so by checking to see if the pointer is null

This cannot be done if the parameter was passed by "Constant Reference"
I.e. the keyword CONST was coded on the prototype

In this case the API CEETSTA must be used
Unless you are using V5R1 or later where this restriction is removed

 D ParmTest Pr
 D NormalParm 10A
 D OmitParm 10A Options(*Omit)
 D NormalParm 10A
 :
 C CallP ParmTest(Parm1 : Parm2 : Parm3)
 :
 C CallP ParmTest(Parm1 : *Omit : Parm3)

 * Test for omitted parms in the called procedure like this
 C If %Addr(Parm2) = *Null

The option *OMIT can be used for parameters which are not mandatory but which occur in the
middle of a parameter sequence and therefore cannot be designated as *NOPASS.

*OMIT is only allowed for parameters that are passed by reference, including those with the CONST
keyword. More on this in a moment.

Several system APIs use this option - the parameter is designated as "can be omitted"

When the option is specified you can either pass an appropriate parameter (in our example a 10
character field) or the special value *OMIT

Note that the parameter will still count in the number of parameters passed and the called program
will need to test to see if the parameter was actually passed. Any attempt to reference the
parameter when *OMIT was passed will result in an error. There are two ways to do this:

Compare the %Addr of the parameter to *Null. For releases prior to V5R1 this method cannot be used
if the parameter was designated as CONST.
You can use the API CEETSTA (The RPG Programmers Guide provides a brief example.) to
determine if a parameter was actually passed.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 23-24

Other OPTIONS
OPTIONS(*VARSIZE)

The parameter can be shorter than specified in the prototype
Or in the case of an array can have fewer elements

It must be passed by reference (i.e. no VALUE keyword)
Applies to character fields and arrays only

OPTIONS(*STRING)
Mainly used when calling C functions
Can only be used to describe data pointers

Allows either a pointer or a string expression as the parameter
If an expression is passed, the string is copied to a temporary area, null
terminated and a pointer to that area passed

 D VarSizeTest Pr
 D VarSize1 20A Options(*VarSize)
 : :
 D TenLong S 10A
 : :
 C CallP VarSizeTest(TenLong)

The Options(*VarSize) keyword can be useful in subprocedures, but is most useful when prototyping
program calls. In the case of arrays "shorter" means that the array has fewer elements than
specified in the prototype.

Starting with V4R2, RPG IV supports the use of varying length character fields and these are a
much better option when building subprocedures that must accept character fields of different
lengths. We hope to demonstrate this to you on the next chart.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 25-26

D CenterFld Pr 256A Varying
D Fld 256A Varying Const

D Field20 S 20
D Field40 S 40
D Field50 S 50
D CenterCon C 'Center this data'

C MoveL CenterCon Field40
C Eval Field40 = CenterFld(Field40)
C Field40 Dsply
C MoveL CenterCon Field20
C Eval Field20 = CenterFld(Field20)
C Field20 Dsply
C MoveL CenterCon Field50
C Eval Field50 = CenterFld(Field50)
C Field50 Dsply

C Eval *InLR = *On

Exploiting Varying Length fields
The procedure prototype and examples of its use

The prototype should of course be /COPY'd in !!

You may have noticed in the prototype that both the return value and the parameter for this
subprocedure are specified as varying length fields (keyword VARYING). Yet none of the fields
passed as parameters to the routine are varying length. So how does this work?

For the parameter, the CONST keyword takes care of things. When a fixed length field is passed, the
compiler will generate a temporary varying length field, copy the field to this temporary, and pass the
temporary to the subprocedure. The compiler will store the original length of the field as the current
length of the varaible length field.
The compiler will handle the conversion of the returned value, copying the data into the target field as if
it were a fixed length field of the same length as its current length.

This is a case where we don't actually want to use a parameter of the type defined. If we were to
pass a variable length field, the routine would probably not produce the desired result. It is designed
to work with fixed-length fields.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 27-28

P CenterFld B
D PI 256A Varying
D Fld 256A Varying Const

D Len S 5I 0
D Pad S 256A Inz Varying
D Temp S 256A Inz Varying

 * Capture length of original input field
C Eval Len = %Len(Fld)

 * Strip trailing blanks
C Eval Temp = %TrimR(Fld)

 * Set Pad to required length - content is spaces due to INZ keyword
C Eval %Len(Pad) = %Int((Len - %Len(Temp)) / 2)

 * Now just return the two "glued" together
C Return Pad + Temp

P E

This is the subprocedure itself

Varying Length fields ... (Cont.)

Let's look at each operation in the subprocedure to see how it works.

The first Eval captures the length of the original input parameter. This works because when the
compiler copies the parameter into the temporary variable length field the length of that field will be
set to the length of the original field (i.e. no trimming takes place on the original content). We will
use this information later in determining how many spaces need to be inserted into the front of the
field to center the content.

The next task is to strip any trailing blanks from the input. If you want the routine to ignore leading
spaces also you should change the %TrimR to a %Trim. The result is placed in the field Temp.

We now calculate the number of spaces that we need to insert to center the field. This is done by
subtracting the length of the field Temp (which contains the input field stripped of trailing spaces)
from the length of the original parameter field. This is then divided by 2 to calculate the number of
spaces that must be inserted. Note that if you want any "odd" spaces to be on the left you should
change the calculation to (%Int((Len - %Len(Temp)) + 1) / 2). The result of the calculation is used to
set the length of the field Pad, which will contain spaces.

All that remains is to return the original field prefixed by the pad field.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 29-30

Dynamic and Static Storage
Procedure pointers
Masking Complexity

What else is there?

In this section we will briefly discuss a number of topics that relate to Subprocedures.

Procedure pointers.
These can provide a level of dynamic call support for bound calls i.e. they permit us to call using a
variable name. The variable is a procedure pointer into which we can place the address of any
procedure that we wish to call. Note that it is the address and not the name of the procedure we will
be using. They also facilitate "call back" processing which can be a useful means of allowing a
generalized function access to a program specific error routine.

Dynamic and Static Storage
Subprocedures support both dynamic and Static storage. Conventional RPG program support only
Static - we will look at the differences.

Masking Complexity
We will not be going into this in detail, just introducing you to the idea. The RPG Redbook
mentioned at the end of the handout contains more information if the topic interests you. The basic
notion is that subprocedures can be used to mask the complexity of certain functions and to simplify
the main line logic. We want the main line to read like pseudo code. Rather than have a comment
such as "Retrieve Customer data" followed by a number of READ, SETLL, CHAIN or whatever
operations, we'd much rather see CustData = GetCustomerInfo(CustNum). Much simpler to follow
and far less susceptible to errors being introduced during maintenance. Similarly the complexity of
subfile handling can be "hidden" from a junior programmer by "wrapping" it in a subprocedure so that
in the mainline code what appears is a reference to a procedure such as: ClearSubfile or
DisplaySubfile.

Another area where such techniques can be used is with APIs, so that not everyone in the shop has
to understand them. They only need to understand the simplified interface provided by the
subprocedure.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 31-32

Static vs. Automatic Storage
Local data fields use automatic storage by default

Can be overridden with the STATIC keyword on the D spec
In other words, local data can be either static or automatic

What's automatic storage?
Storage that exists only for the duration of the procedure call
Goes away (is de-allocated) when procedure returns to its caller

Static storage is the only type for global fields in RPG
LR indicator controls when global fields are reinitialized

Local fields -- even if declared STATIC -- are not reinitialized after LR

Why use automatic storage?
Automatic "clean up" of fields without the overhead of LR
More efficient - storage not used unless / until the procedure is called
It allows for recursive calls

Data stored in automatic storage goes away when the procedure returns to its caller. Upon
subsequent calls to the procedure, automatic fields "lose" their values. Data stored in static storage
remains between calls to the procedure until the Activation Group where the procedure is activated
is reclaimed.

Recursion (the ability for a subprocedure to be called multiple times in the same invocation stack --
in fact, for a subprocedure to call itself!) is made possible because of automatic storage. Each call
to the subprocedure gets a "fresh" set of local automatic storage fields. This is why subprocedures
may be called recursively, but main RPG procedures cannot.

Automatic storage can be considerably more efficient than static storage since it is only allocated if
and when the subprocedure is called. Think about static binding and the fact that many procedures
are often activated at once in a job! Remember that all the procedures in all the Service Programs
referenced (directly or indirectly) by an ILE program are allocated immediately on the first call in the
job to that ILE program. If that represents a lot of procedures (either main procedures or
subprocedures) all static fields will be allocated and initialized by the system right away. In many
cases, many of those procedures may never be called in this particular job. However, their static
storage must always be allocated and remain allocated until the program's Activation Group is
reclaimed. Use of automatic storage reduces this potential "overuse" of memory by allocating only
what is needed and only for the duration that it is needed. In "memory-heavy" applications, this
could have a noticeable impact on application performance and system efficiency.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 33-34

 H DftActGrp(*NO) ActGrp('QILE')

 D ProcAuto PR

 C Do 5

 C CallP ProcAuto

 C EndDo
 C Eval *INLR = *On

 P ProcAuto B

 D PI

 D CountStat S 3 0 Static Inz
 D CountAuto S 3 0 Inz

 C Eval CountStat = CountStat + 1
 C Eval CountAuto = CountAuto + 1
 C 'CountStat=' Dsply CountStat
 C 'CountAuto=' Dsply CountAuto

 P E

What are the values displayed each time?

Example: Automatic & Static

To test if you really understand automatic and static storage, can you predict what values will be
displayed when the main procedure in this sample code is called?

The value of CountStat increases by 1 each time it is displayed.

The value of CountAuto never increases. It is displayed as 1 every time!

Now, for the tougher question:

Assume this main procedure was immediately called a second time in the same job. What value
would be displayed for CountStat on the first call to the ProcAuto subprocedure ??

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 35-36

Procedure Pointers
Specified by adding keyword PROCPTR to the definition

They allow you to call a variable target
Procedure pointer must be set before the call

Either by using %PAddr to supply initalization values as in this example
Or by using APIs

APIs can only reference procedures in Service Programs
%PADDR initialization can be to any procedure
So you can make a "Service Program" out of any program object

All procedures must have a compatible interface

 D Compute Pr 15P 5 ExtProc(ProcToUse)
 D Factor1 15P 5 Value
 D Factor2 15P 5 Value

 D ProcToAdd * ProcPtr Inz(%PAddr('ADD'))
 D ProcToSub * ProcPtr Inz(%PAddr('SUB'))
 D ProcToMul * ProcPtr Inz(%PAddr('MUL'))

This is one of the rare situations where the prototype used in the call is not the same as that used for
the individual subprocedures. They do however need to have the same format.

The prototypes for the actual subprocedures themselves used in this example are as follows:

 D ADD Pr 15P 5
 D Factor1 15P 5 Value
 D Factor2 15P 5 Value

 D SUB Pr 15P 5
 D Factor1 15P 5 Value
 D Factor2 15P 5 Value

 D MUL Pr 15P 5
 D Factor1 15P 5 Value

 D Factor2 15P 5 Value

The actual subprocedure that gets called will depend on the contents of the procedure pointer
ProcToCall which will be set during the program logic. Notice that in the Compute prototype the
name of the procedure pointer field is not contained in quotes. This is what identifies it as a variable
and not the name of a subprocedure.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 37-38

Procedure Pointers (Contd.)

 D Value1 15P 5
 D Value2 15P 5
 D Function 1A
 D Result 15P 5

 * Decide which proc to call
 C Select
 C When Function = '+'
 C Eval ProcToUse = ProcToAdd
 C When Function = '-'
 C Eval ProcToUse = ProcToSub
 C When Function = '*'
 C Eval ProcToUse = ProcToMul
 C Other
 C Eval ProcToUse = *Null
 C EndSl

 C If ProcToUse <> *Null
 C Eval Result = Compute(Value1 : Value2)
 C Else
 C Eval Result = 0
 C EndIf

Using this method, it is possible to call any procedure in any program or service program.

In the example here, the procedures are presumed to included either in the same compilation unit as
the code that invokes them, or bound to it. As an alternative, we can also call procedures in a
completely separate program, as long as it provides us with the procedure pointers.

For instance the program could consist of a small main line, followed by the procedures. The
mainline contains a series of initialized pointers - each identifying a particular procedure. The
process is this:

When the mainline is called, it passes the pointers to its caller
It could make decisions about which pointers to supply based on the user Id or similar information

The caller then uses those pointers to invoke the specific function(s) it requires.

Because the target of the initial call is a program (which of course can called by name) this setup
allows you to call virtually any procedure in any program.

Procedure pointers are also useful in implementing "callback" programming techniques. The C
functions qsort and bsearch are good examples of this. We will look at a brief example later.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 39-40

Procedure Pointers (Contd.)
This is the source for the ADD subprocedure

and its associated prototype

The source for the SUB and MUL functions is similar (very!)

Note that the result is computed and returned in one step
 D ADD Pr 15P 5
 D Factor1 15P 5 Value
 D Factor2 15P 5 Value
 : : :
 : : :
 P ADD B

 D PI 15P 5
 D Factor1 15P 5 Value
 D Factor2 15P 5 Value

 C Return Factor1 + Factor2

 P ADD E

The source for the SUB and MUL subprocedures is almost identical to the ADD.

Needless to say one would not bother to do all this work for such trivial tasks as these. The idea
here is to show you the principals involved.

In our example we have hard-coded the initialization values of the procedure pointers. However,
because the content of the pointers can be determined programmatically, there are many things that
can be done that are far more difficult if not impossible through more conventional means.

New routines can be introduced
The same call can target different processing for different users
Some users can be "locked out" or allowed to use certain functions at specific times.
etc. etc.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 41-42

Call Back Processing
User specified code is called from a utility routine

Useful technique in a number of areas
For example to allow a common validation routine to provide program
specific error handling

Utility Procedure
XYZ

Calls "home" using
supplied Procedure

Pointer

Main line code

Calls XYZ routine

Program Specific
Handler Procedure

ABC

 Parms +
Procedure Pointer

to ABC

Once you begin to develop subprocedures, you will inevitably come to a point where it seems that a
common routine would be useful, but certain actions related to the processing are very specific to
the programs that would use it. Call Back processing is an excellent way of handling this.

In other languages this technique is fairly common. There are a number of examples in the C
library. For instance the qsort function uses a user supplied call back procedure to determine which
of two elements is the larger. The qsort function itself handles the mechanics of the sort, but
requires program specific user code to make the sequencing decisions.

In our example we are using the idea of a generic "is it numeric" validation routine. This is called
from our main line program, but any errors that occur will need to be reported by the program. Of
course there are many other ways of handling this situation, but this has the advantage that the main
logic flow remains relatively "clean". Besides, we are demonstrating he technique here not
proposing it as the perfect solution for all programming problems.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 43-44

 D MyErrorCode Pr
 D InpString 15A Varying Value

 D ValidNum Pr N
 D InpString 15A Const Varying
 D ErrorHandler * ProcPtr Value

 D TestData S 15A Inz('12345.96ABCD')

 * Process valid numbers only - errors handled by MyErrorCode
 C If ValidNum(TestData: %PAddr(MyErrorCode))
 ..
 C EndIf

Call Back Processing (Cont.)
The procedure ValidNum is "called" by the IF opcode

It is passed the "ordinary" parameters
In this case the data to be validated

And a Procedure Pointer to the required error handling procedure
ValidNum will determine if the error routine needs to be called or not

 P ValidNum B
 D PI N
 D InpString 15A Const Varying
 D ErrorHandler * ProcPtr Value

 D UserErrorCode Pr ExtProc(ErrorHandler)
 D OriginalParm 15A Varying Value

 * Common routine performs validation etc. here

* If an error is detected, call the user routine to report it
 C CallP UserErrorCode(InpString)
 C Return *On

 P ValidNum E

Call Back Processing (Cont.)
This is the outline of the generic validation routine

In the event that it detects an error it calls the user supplied procedure

See the notes page for a variation using an optional parm

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 45-46

 P MyErrorCode B
 D PI
 D TestString 15A Varying Value

 D Message S 52A

 * Your program specific error routine is coded in this subprocedure

 * If an error is detected, the user supplied routine is called

 C Eval Message = 'Field (' + TestString
 C + ') is not a valid number'
 C Message Dsply
 C Return

 P MyErrorCode E

Call Back Processing (Cont.)
This is the user specified error handler

In this case it simply receives a copy of the original parameter data
and formats an error message

Sometimes it is useful to be able to make the call back procedure optional. For example the routine
we are calling may contain default error handling logic and in some cases that will be good enough.
In these cases we can make the call back aprameter optional i.e. Options(*NoPass) as shown in this
example.

 P ValidNum B
 D PI N
 D InpString 15A Const Varying
 D ErrorHandler * ProcPtr Value Options(*NoPass)

 D UserErrorCode Pr ExtProc(ErrorHandler)
 D OriginalParm 15A Varying Value

 D ErrorMessage C 'The Default Handler was used'

 * Common routine performs validation etc. here

 * If an error is found, the user error routine is called if supplied
 C If %Parms > 1
 C CallP UserErrorCode(InpString)
 C Else
 * No user routine supplied so perform default error handling
 C ErrorMessage Dsply
 C EndIf

 C Return *On
 P ValidNum E

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 47-48

Don't just think of subprocedures for reusable code
Some functions are hard to implement/understand

You can "Wrap" APIs (including the C functions) to provide:
A simplified interface

With intelligent defaults
And the defaults can be tailored to your shop's requirements

Only one person has to understand how the function works
The rest just use the new interface

Re-sequenced parameters
The ones most likely to be needed can be placed first

Generalized error handling
With the ability for the calling program to also handle the error

You can also Mask the complexity of your programs
Using subprocedures to contain the actual logic

Leaving the main line to read more like pseudo code

Wrapping and Masking

The RPG Redbook "Who Knew You Could Do That with RPG IV?" describes two procedures that
"wrap" User Space APIs to achieve the objectives outlined here. You can find more information on
the Redbook at the end of this handout.

The Redbook example also shows how the procedures are used.

When implementing these kinds of procedures, or indeed any general purpose procedures, it is
important that they be documented. My preference is for them to follow the format used by IBM for
the RPG manuals, and in particular the pieces describing the Built-in Functions. One of the (few?)
advantages to IBM moving to HTML based documentation is that it is a fairly simple matter to add
your own documentation to your companies intranet so that is available in the same form as the
regular manuals.

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 49-50

For more information:

Who Knew You Could Do That with
RPG IV?

A Sorcerer's Guide to System Access and More

SG24-5402

International Technical Support Organization
Rochester, Minnesota

Check out the RPG Redbook
Available now - SG24-5402
 Go to www.redbooks.ibm.com

You can read it on-line
Download the PDF file
Or order hardcopy

Includes worked examples of
RPG IV Subprocedures

Some of the examples may look
familiar!

Procedure "wrappers"
TCP/IP Sockets
CGI programming
Using the C function library
ILE Error handling
and much more

Some of the routines in this handout were used as part of the base material which was used in
preparing the new RPG Redbook. The book also contains a brief tutorial on ILE as well as pieces
on prototyping, and much, much more.

If you read the Redbook and like it, don't forget to use the feedback form at the Redbook web site to
let IBM know that you'd like to see more RPG oriented Redbooks!!!

Copyright 2002 - Partner400 RPG IV: Subprocedures - Beyond the Basics - Page 51-52

