
Your partner in AS/400 and iSeries Education

© Copyright Partner400, 2002.

Susan M. Gantner
susan.gantner @ partner400.com
www.partner400.com

Using SQL in RPG Programs:
An Introduction

 OCEAN Technical Conference
Catch the Wave

Agenda

What is SQL?

SQL language overview
Accessing data using SQL
Creating/maintaining databases using SQL

SQL on the AS/400
Using interactive SQL
Embedding SQL in programs
Query Manager

©Copyright Partner400, 2002. SQL - 1-2 .

What is SQL on the AS/400?

An alternative database interface language
NOT a database management system

High level, simple statement formats

A language used for:
Data Definition (DDL)
Data Manipulation (DML)

Completely interchangeable data methods
SQL tables may be accessed with native language
DDS created files can be access with SQL

OS/400 Integrated Relational
Database Manager

DDS definition
SQL DDL

IDDU

HLL reads/writes

DFU

Query/400

SQL DML

One Database Manager

©Copyright Partner400, 2002. SQL - 3-4 .

Nbr Name Pos Sex Sal

10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

SQL Term AS/400 Term
Table File
Row Record
Column Field

Table

Row

Column

Terminology

Basic statements
SELECT - retrieves data; one row or multiple
UPDATE - updates one row or multiple
DELETE - deletes one row or multiple
INSERT - adds one row or multiple

Environments
Interactive SQL - Use STRSQL command
Embedded SQL - Put into High Level Language (HLL)
Query Manager - Report Formatter

Data Manipulation Language

©Copyright Partner400, 2002. SQL - 5-6 .

SELECT - some column(s) or * or expression
FROM - some table(s)
WHERE - selection criteria
GROUP BY - some column(s)
HAVING - selection criteria for groups
ORDER BY - Presentation order (sort)

 SELECT *
FROM empl

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Retrieving Data - the SELECT statement

SELECT any number of columns in any order
or *, which means all columns

WHERE clause provides selection criteria

SELECT nbr, name
FROM empl
WHERE pos = 5

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Nbr Name
35 JOE
20 DON

Retrieving Data - the SELECT statement

©Copyright Partner400, 2002. SQL - 7-8 .

SELECT statement

Keywords in the WHERE clause:
Greater than (or =), Less than (or =), Equal
Not greater, Not less, Not equal
AND, OR, NOT
Range - inclusive constant range (BETWEEN)
Values - list of constant values (IN)
Pattern matching (LIKE) with wild cards

% = any number of characters
_ = exactly 1 character

SELECT name, pos
FROM empl
WHERE pos BETWEEN 5 and 7

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Name Pos
JOE 5
JON 7
DON 5

BETWEEN is inclusive of values listed

 SELECT statement - Examples

©Copyright Partner400, 2002. SQL - 9-10 .

SELECT name, nbr
FROM empl
WHERE name LIKE 'A%'

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Name Nbr
AMY 10
ANN 25

Note that you can resequence the column (field) names

 SELECT statement - Examples

SELECT name, nbr, pos
FROM empl
WHERE sex = 'M' and (sal * 12) > 12000

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

More complex conditions, including calculations
Note that selections can be made on columns not selected

Name Nbr Pos
JON 30 7
DON 20 5

 SELECT statement - Examples

©Copyright Partner400, 2002. SQL - 11-12 .

ORDER BY specifies row order
If not specified, order is unpredictable!
 Not always physical order

SELECT name, nbr, pos
FROM empl
WHERE sex = 'M' and (sal * 12) > 12000
ORDER BY name

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Name Nbr Pos
DON 20 5
JON 30 7

 SELECT statement - Examples

Derived Columns can be created
If used for ordering, use relative position number

SELECT name, sal * 12
FROM empl
ORDER BY 2

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Name Sal
JOE 12000
DON 13800
AMY 14400
JON 18000
ANN 18600

 SELECT statement - Examples

©Copyright Partner400, 2002. SQL - 13-14 .

GROUP BY provides row summary
Built-in functions for grouping:

AVG, SUM, MAX, MIN COUNT

SELECT pos, AVG(sal)
FROM empl
GROUP BY pos

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Pos AVG(Sal)
2 1200
5 1075
7 1500
8 1550

 SELECT statement - Examples

Selecting on Groups: HAVING

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

SELECT pos, AVG(sal)
FROM empl
GROUP BY pos
HAVING AVG(sal) > 1200

Pos AVG(Sal)
7 1500
8 1550

 SELECT statement - Examples

©Copyright Partner400, 2002. SQL - 15-16 .

Join: dynamic connection of selected columns from more
than one table

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

Pos Desc
2 Operator
5 Programmer
7 Manager
8 Analyst

JOB Table
EMPL Table

SELECT name, empl.pos, desc
FROM empl, job
WHERE empl.pos = job.pos

Name Pos Desc
AMY 2 Operator
JOE 5 Programmer
JON 7 Manager
DON 5 Programmer
ANN 8 Analyst

Retrieving Data from Multiple Tables

Changing Data in a Table

SQL Statements
UPDATE
INSERT INTO (add a record)
DELETE

Each can handle either
One row at a time
Multiple rows at a time

©Copyright Partner400, 2002. SQL - 17-18 .

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

UPDATE empl
 SET sal = sal + (sal * .10)
 WHERE pos = 5

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1100
30 JON 7 M 1500
20 DON 5 M 1265
25 ANN 8 F 1550

Give all programmers (pos = 5) a 10% raise!

UPDATE Statement

INSERT INTO empl
 SELECT nbr, name, pos, sex, sal

 FROM emplnew
 WHERE pos = 9

INSERT INTO empl
(name, nbr, pos, sal, sex)
VALUES ('AMY', 10, 2, 1200, 'F')

Or multiple rows at a time using a SELECT statement:

INSERT Statement

Add new rows using INSERT
Column names and values in one-to-one correspondence
One row at a time using the VALUES clause:

©Copyright Partner400, 2002. SQL - 19-20 .

Nbr Name Pos Sex Sal
10 AMY 2 F 1200
35 JOE 5 M 1000
30 JON 7 M 1500
20 DON 5 M 1150
25 ANN 8 F 1550

DELETE
FROM empl
WHERE nbr = 10

Nbr Name Pos Sex Sal
35 JOE 5 M 1100
30 JON 7 M 1500
20 DON 5 M 1265
25 ANN 8 F 1550

Rows can be deleted individually or by sets as well

DELETE Statement

Database Management with SQL

DDL - Data Definition Language

SQL database objects
COLLECTION (AS/400 library object)
TABLE (Physical file)
VIEW (Logical file)
INDEX (Logical file)

To create SQL database objects
CREATE object_type object_name

To delete SQL database objects
DROP object_type object_name

©Copyright Partner400, 2002. SQL - 21-22 .

CREATE TABLE empl
(nbr DEC(5,0) NOT NULL,
name CHAR(25) NOT NULL,
pos DEC(1,0) NOT NULL,
sex CHAR(1) NOT NULL,
sal DEC(7,2) NOT NULL WITH DEFAULT)

Tables are created as physical files
Can be accessed same as any other PF
With or without SQL

If created into an SQL collection, automatically journaled

Columns are null-capable by default
Specify NOT NULL to mimic DDS behavior
WITH DEFAULT supplies default value in new rows

Creating Tables

CREATE VIEW richmen AS
 SELECT name, sex, sal
 FROM empl
 WHERE sex = 'M' and (sal * 12) > 17000

Contain a selection of columns and/or rows from base table
May be a subset of columns and/or rows
May be a join view

Created as a logical file with NO key fields

Views of views are allowed

Views may be summaries (using GROUP BY)

SQL Views

©Copyright Partner400, 2002. SQL - 23-24 .

CREATE INDEX empnbr
 ON empl (nbr)

CREATE INDEX empindx
ON empl (pos DESC, nbr)

Creates a keyed logical file over table(s)

Used primarily to enhance performance
Note: ALL keyed logical files may be used to improve performance

Even if not created as SQL indexes

Must contain key field(s)
May be ascending or descending

May be specified as UNIQUE

SQL Indexes

DB2/400 Query Manager and SQL Development Kit (or QM &
SDK)

Interactive SQL interface
Pre-compilers for embedding SQL in programs
Query Manager for generating reports

OS/400 contains:
Run-time support for SQL and Query Manager
QM & SDK not required to run SQL applications or pre-created QM
queries

Using SQL on the AS/400

©Copyright Partner400, 2002. SQL - 25-26 .

A tool for programmers and database administrators

Interactive functions
Quickly maintain database
Test SQL code before embedding
Create test data scenarios

STRSQL to begin

Interactive SQL

 Enter SQL Statements
Type SQL statement, press enter.
==>SELECT_______________________________

F3=Exit F4=Prompt F6=Insert F9=Retrieve
F10=Copy F13=Service F14=Delete F15=Split
F24=More keys

 Specify SELECT Statement
Type info for SELECT. F4 for list

 FROM table(s) _______________
 SELECT column(s _______________
 WHERE conditions. . . . _______________
 GROUP BY column(s). . . _______________
 HAVING condition(s) . . _______________
 ORDER BY column(s). . . _______________
 FOR UPDATE OF column(s) _______________

F3=Exit F4=Prompt F5=Refresh F12=Cancel

Interactive SQL

©Copyright Partner400, 2002. SQL - 27-28 .

Why embed SQL in programs?
Perform dynamic selection functions

ala OPNQRYF, except more flexible
Perform set-at-a-time functions under program control
Even to replace HLL I/O operations

e.g., READ, WRITE, UPDATE, CHAIN

What can be embedded?
The SQL statements we have seen so far

e.g., SELECT, UPDATE, INSERT, CREATE TABLE, etc.
Program control statements

e.g., DECLARE CURSOR, OPEN, CLOSE, FETCH, COMMIT, ROLLBACK

Embedded SQL

User
Source
File

Precompile
Modified
Source
File

Processed
SQL Stmts

Compile

Access
Plans

Program

(temporary)

SQL Precompiler for Embedded SQL

©Copyright Partner400, 2002. SQL - 29-30 .

RPG Interface - Source

Retrieve column/field values into program variables

One-to-one correspondence between SELECT list and INTO
list

SELECT....INTO expects only a SINGLE row/record
multiple rows require the use of cursor operations

 * No F spec needed !

 D EmpNbr S 5 0
 D Name S 25
 D Job S 1

 C/EXEC SQL
 C+ SELECT NAME, POS
 C+ INTO :Name, :Job
 C+ FROM EMPL
 C+ WHERE NBR = :EmpNbr
 C/END-EXEC

All SQL statements must be coded on a C spec

SQL statements begin with /EXEC SQL in positions 7-15
with the slash in position 7

and end with /END-EXEC in positions 7-15

You can enter SQL statements on the same line as /EXEC SQL
However, /END-EXEC must be on a separate line

Between beginning and ending delimiters, all SQL statements
must have + in position 7

SQL statements cannot go past position 80

SQL statements cannot be included via a /COPY statement

Rules: Embedding SQL in RPG Code

©Copyright Partner400, 2002. SQL - 31-32 .

Retrieve column/field values into program variables

One-to-one correspondence between SELECT list and INTO
list

SELECT....INTO expects only a SINGLE row/record
multiple rows require the use of cursor operations

COBOL Interface - Source

 WORKING-STORAGE SECTION.
 77 EMPNBR PIC S9(5) COMP-3.
 77 DEPT PIC S9(3) COMP-3.
 77 JOB PIC X(25).

 PROCEDURE DIVISION.
 EXEC SQL
 SELECT name, pos
 INTO :nam, :job
 FROM empl
 WHERE nbr = :EmpNbr
 END-EXEC.

Host structures are groups of variables
Data structures in RPG
Group items in COBOL

Structures can be used in SQL statements
Replaces list of variables

Using Structures in SQL

 D EMP DS
 D Job 5 0
 D Name 25
 D Sal 7 2

 D EmpNbr S 1

 C/EXEC SQL
 C+ SELECT POS, NAME, SAL
 C+ INTO :EMP
 C+ FROM EMPL WHERE NBR = :EmpNbr
 C/END-EXEC

©Copyright Partner400, 2002. SQL - 33-34 .

:

Selecting & Processing Multiple Rows

Steps to access multiple rows:
1. Declare cursor
2. Open cursor
3. Fetch a row (record)
4. Process row (UPDATE, INSERT, etc)
5. IF last row: go to Step 6,

ELSE go to Step 3
6. Close cursor

DECLARE CURSOR statement

Similar in function to HLL file declarations (F-specs or FD's)
No processing actually takes place - just definition

Host variables may be included in the statement

Created using an embedded SELECT command
most SELECT clauses may be used - ORDER BY, GROUP BY, etc

Must be declared before being referenced

 C/EXEC SQL
 C+ DECLARE empcsr CURSOR FOR
 C+ SELECT nbr, nam, sal
 C+ FROM emp
 C+ WHERE dpt = :dept
 C+
 C/END-EXEC

©Copyright Partner400, 2002. SQL - 35-36 .

DECLARE CURSOR - more clauses

By default, all columns may be updated or deleted
FOR UPDATE OF - lists the columns that are to be updated

columns listed in an ORDER BY clause may not be listed in FOR UPDATE
OF clause also

FOR READ ONLY - specifies no updating/deleting allowed

Considerations:
FOR READ ONLY - may improve performance; better documentation
FOR UPDATE OF - security; may improve performance

 C/EXEC SQL
 C+ DECLARE empcsr CURSOR FOR
 C+ SELECT nbr, nam, sal
 C+ FROM emp
 C+ WHERE dpt = :dept
 C+ FOR UPDATE OF sal
 C/END-EXEC

With Hold clause useful with Commitment Control
By default, cursors are closed when Commit/Rollback commands
execute
With Hold - keeps cursor open
With Hold also an optional clause on the Commit/Rollback commands

DECLARE CURSOR - more clauses

 C/EXEC SQL
 C+
 C+ DECLARE empcsr CURSOR FOR
 C+ WITH HOLD
 C+ SELECT nbr, nam, sal
 C+ FROM emp
 C+ WHERE dpt = :dept
 C+ FOR UPDATE OF sal
 C+
 C/END-EXEC

©Copyright Partner400, 2002. SQL - 37-38 .

Actually executes the SQL Select statement

Builds the access path if necessary

Successful Open places the file cursor before the first row of
the result table

Cursor must be closed before it can be opened

Syntax: OPEN cursor-name

OPEN statement

 C/EXEC SQL
 C+
 C+ OPEN empcsr
 C+
 C/END-EXEC

FETCH statement:

 C/EXEC SQL
 C+
 C+ FETCH NEXT FROM empcsr
 C+ INTO :number, :name, :salary
 C+
 C/END-EXEC

 C/EXEC SQL
 C+
 C+ FETCH NEXT FROM empcsr
 C+
 C/END-EXEC

Two functions
position the cursor for the next operation

bring rows into the program

©Copyright Partner400, 2002. SQL - 39-40 .

Alternatives to Next processing:
must define the cursor as a scrollable cursor in the declare statement

FETCH statement

 C/EXEC SQL
 C+
 C+ DECLARE empcsr SCROLL CURSOR FOR
 C+ SELECT nbr, nam, sal
 C+ FROM emp
 C+ ORDER BY empid
 C+
 C/END-EXEC

 C/EXEC SQL
 C+
 C+ FETCH PRIOR FROM empcsr
 C+ INTO :number, :name, :salary
 C+
 C/END-EXEC

Alternatives to Next processing:

Keyword Positions Cursor
Next On the next row after the current row
Prior On the row before the current row
First On the first row
Last On the last row
Before Before the first row - must not use INTO
After After the last row - must not use INTO
Current On the current row (no change in

position)
Relative n n < -1 Positions to nth row before current

n = -1 Same as Prior keyword
n = 0 Same as Current keyword
n = 1 Same as Next keyword
n > 1 Positions to nth row after current

FETCH statement

©Copyright Partner400, 2002. SQL - 41-42 .

Update or delete the current row of an updatable cursor

Can only be done after successful Fetch operation
Add a "Where Current of" clause to the Update and Delete statements

Positioned Update and Delete Stmts

 C/EXEC SQL
 C+ DECLARE empcsr CURSOR FOR
 C+ SELECT nbr, nam, sal
 C+ FROM emp
 C+ ORDER BY empid
 C+ FOR UPDATE OF sal
 C/END-EXEC

 C/EXEC SQL
 C+ FETCH NEXT FROM empcsr
 C+ INTO :number, :name, :salary
 C/END-EXEC

 C/EXEC SQL
 C+ UPDATE emp
 C+ SET sal = sal + :raise
 C+ WHERE CURRENT OF empcsr
 C/END-EXEC

Close the cursor
Cursor must be opened in order to be closed

DB2/400 may close cursors for other reasons also:
job end
activation group ends
program ends
modules ends
commit or rollback without a 'with hold' clause
error handling......

Close Statement

 C/EXEC SQL
 C+
 C+ CLOSE empcsr
 C+
 C/END-EXEC

©Copyright Partner400, 2002. SQL - 43-44 .

Status always returned in the code
both successful and unsuccessful statements

Programmer must check return codes within program

SQL Communications Area (SQLCA)
contains feedback information
must be included in all SQL programs
RPG includes SQLCA automatically
other languages must have specific include:

Error Detection and Handling

 /EXEC SQL

 INCLUDE SQLCA

 /END-EXEC

SQL Communications Area (SQLCA)
SQLCAID Char(8) Structure identifying literal: "SQLCA"
SQLCABC Integer Length of SQLCA
SQLCode Integer Return code
SQLErrML SmallInt Length of SQLErrMC
SQLErrMC Char(70) Message Replacement text
SQLErrP Char(8) Product ID literal: "QSQ" for DB2/400
SQLErrD Array of Integers SQLErrD(1) - treated as Char(4); last 4 characters of

CPF or other escape message
SQLErrD(2) - treated as Char(4); last 4 characters of

CPF or other diagnostic message
SQLErrD(3) - for Fetch, Insert, Update or Delete,

number of rows retrieved or updated
SQLErrD(4) - for Prepare, relative number indicating

resources required for execution
SQLErrD(5) - for multiple-row Fetch, contains 100 if

last available row is fetched; for Delete,
number of rows affected by referential
constraints; for Connect or Set
Connection, contains t-1 if unconnected,
0 if local and 1 if connection is remote

SQLErrD(6) - when SQLCode is 0, contains SQL
completion message id

Error Detection and Handling

©Copyright Partner400, 2002. SQL - 45-46 .

SQL Communications Area (SQLCA) continued

SQLWarn Char(11) Set of 11 warning indicators; each is blank, W, or N
SQLWarn0 Char(1) Blank if all other SQLWARNx warning indicators are blank

W if any warning indicator contains W or N
SQLWarn1 Char(1) W if a string column was truncated when assigned to host variable
SQLWarn2 Char(1) W if null values were eliminated from a function
SQLWarn3 Char(1) W if number of columns is larger than number of host variables
SQLWarn4 Char(1) W if prepared Update or Delete statement has no a Where clause
SQLWarn5 Char(1) Reserved
SQLWarn6 Char(1) W if date arithmetic results in end-of-month adjustment
SQLWarn7 Char(1) Reserved
SQLWarn8 Char(1) W if result of character conversion contains the substitution character
SQLWarn9 Char(1) Reserved
SQLWarnA Char(1) Reserved
SQLState Char(5) Return code; "00000' if no error or warning

Error Detection and Handling

SQLCODE (SQLCOD) contains return code
 = 0 Successful statement execution
 > 0 Successful, with warning condition
 < 0 Unsuccessful - statement failed

SQLCODE value indicates exact error or condition
e.g.. 100 = Row not found (or end of file)
e.g.. -552 = Not authorized to object

SQLCODE values have corresponding messages
e.g.. SQL0100 = Row not found
e.g.. SQL0552 = Not authorized to &1.

SQLCODE Error Handling

©Copyright Partner400, 2002. SQL - 47-48 .

 EXEC SQL
 SELECT name INTO :lastname
 WHERE emp = Employee-Number
 END-EXEC.
 IF SQLCODE < 0
 PERFORM ERROR-ROUTINE.
 IF SQLCODE = 100
 PERFORM NOT-FOUND-ROUTINE.

 C/EXEC SQL
 C+ SELECT name INTO :nam
 C+ WHERE emp = :number
 C/END-EXEC
 C If SQLCod < 0
 C ExSr Error
 C EndIf
 C If SQLCod = 100
 C ExSr NotFound
 C EndIf

 COBOL

 RPG

Error Checking Within a HLL Program

WHENEVER statement checks SQLCA
can branch to a location based on condition

Three conditions:
SQLWARNING (SQLCODE > 0 except 100)

OR (SQLWARN0 = 'W')
SQLERROR (SQLCODE < 0)
NOT FOUND (SQLCODE = 100)

Two possible actions - neither very good!
CONTINUE
GO TO label

WHENEVER Error Handling

 C/EXEC SQL
 C+
 C+ WHENEVER SQLERROR GO TO err
 C+
 C/END-EXEC

©Copyright Partner400, 2002. SQL - 49-50 .

A different way to use SQL

SQL statements are not predefined in program
Dynamically created on the fly as part of program logic

SQL Precompiler cannot fully process dynamically created
SQL statements

PREPARE statement is used in program logic to compile dynamically
created SQL statements at run time

Simple dynamic SQL statement process:
Build SQL statement in a character variable
PREPARE the SQL statement
EXECUTE the SQL statement

Special considerations exist for SELECT statements

What is Dynamic SQL?

Where to use Dynamic SQL

Report programs with user run time selection
Files
Fields
Record selection criteria
Sorting
SQL built in functions

Whenever the exact syntax of an SQL statement cannot be
determined beforehand

Dynamic SQL can be resource intensive
A dynamic SQL statement has to be parsed (interpreted) and executed
at run time
Negative performance impact
Use dynamic SQL only when necessary

©Copyright Partner400, 2002. SQL - 51-52 .

Parameter Markers in Dynamic SQL

Dynamic SQL statements cannot contain host variables
e.g., :CUSTNO

Parameter markers are placed in embedded SQL statements
Indicated by ?
Used to dynamically insert host variable data for predicate values
and/or column assignments
Values are assigned to markers when the statement is executed

Example on next chart

C Eval SQLStmtStr = 'Delete From Customer Where -
C CUSTNO = ?'

Dynamic SQL - Example

C If DeleteCorp
C Eval Condition = 'Corp = ?'
C Else
C Eval Condition = 'CustNo = ?'
C EndIf

C Eval SQLStmtStr = 'Delete From Customer Where '
C + Condition

C/EXEC SQL

C+ PREPARE DynSQLStmt
C+ FROM :SQLStmt

C/END-EXEC
C If (SQLCod = 0) And (SQLWn0 = *Blank)
C/EXEC SQL

C+ EXECUTE DynSQLStmt
C+ Using :Cust

C/END-EXEC
C EndIf

©Copyright Partner400, 2002. SQL - 53-54 .

Use SQL source member types
e.g., SQLRPG, SQLRPGLE, SQLCBL, SQLCBLLE
Prompting won't work without SQL member type

You can prompt SQL statements in SEU
You MUST key both EXEC SQL and END-EXEC statements first

Then you can prompt (F4) for statements in between
Same prompter as interactive SQL

Compile commands
Pre-ILE compilers

CRTSQLRPG, CRTSQLCBL
ILE compilers

CRTSQLRPGI, CRTSQLCBLI
Creates either *PGM, *SRVPGM or *MODULE depending on parameter
value specified for "Compile type" or OBJTYPE

Embedded SQL Tips ...

Test statements in Interactive SQL before embedding them
When exiting Interactive SQL session

You can save session statements to a source member
Copy from this member into your program source

Default for SQL is to use Commitment Control
Requires journaling

Program execution fails if updated files are not journaled
To request no commitment control

COMMIT(*NONE) on compile

SQL precompile step happens before RPG/COBOL compile
Therefore, if SQL syntax or semantic error occurs, no "typical" compile
source listing available
Can be very difficult to work through problems at this stage
Try removing "SQL" from member type and compile "normally"

Compile will fail, but you can see results of externally described structures,
COPYs, etc.

Embedded SQL Tips ...

©Copyright Partner400, 2002. SQL - 55-56 .

Embedded SQL Tips ...

To help diagnose run-time problems
Look in your job log after running the SQL program

Messages there often help diagnose problems
Put your job in debug mode before running SQL program, then look in
your joblog

Additional messages are put in joblog when in debug mode which can be
helpful in diagnosing SQL performance problems

When using ILE source view debugger
ILE SQL program compiles automatically generate 3 different views
with DBGVIEW(*SOURCE):

Use F15 to switch between:
SQL Root Source view
SQL Output view (output from SQL precompiler)
Listing view

Performance Tips

SQL uses two basic ways to retrieve data
Dataspace scan or arrival sequence

Generally used when MORE than 20% of records will be selected
Index based or keyed access

Generally used when LESS than 20% of records will be selected

If SQL can use an index, performance usually improves
significantly!

Create indexes for columns frequently referenced in
WHERE clause
GROUP BY clause
ORDER BY clause

Create indexes for fields that are frequently used to join files

Use PRTSQLINF command and/or job log debug messages to
see if indexes are being used by SQL optimizer

©Copyright Partner400, 2002. SQL - 57-58 .

Query Manager

With Query Manager users can:
Create, run and manage queries and report forms
Create, manage and query database files

QM Table support allows creation and data entry facilities

With Query Manager programmers can:
Do all the above user functions
Embed queries into applications
Pass parameter data into queries at run time

Any part of the query (SQL statement) can be supplied
including the entire SQL statement itself!

Practical, effective solution for applications requiring complex
data retrieval

Very flexible, functional application development tool
embedded in a HLL program
or entered interactively

Portability to other relational databases
Easy report writing with programmable flexibility

Similarity across many relational databases

Summary

©Copyright Partner400, 2002. SQL - 59-60 .

